Integrated Density of States for Random Metrics on Manifolds
نویسنده
چکیده
We study ergodic random Schrödinger operators on a covering manifold, where the randomness enters both via the potential and the metric. We prove measurability of the random operators, almost sure constancy of their spectral properties, the existence of a selfaveraging integrated density of states and a Šubin type trace formula.
منابع مشابه
Warped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کاملGroupoids, Von Neumann Algebras and the Integrated Density of States
We study spectral properties of random operators in the general setting of groupoids and von Neumann algebras. In particular, we establish an explicit formula for the canonical trace of the von Neumann algebra of random operators and define an abstract density of states. The general setting applies to many examples studied before while we lay special emphasis on a new one: random Schrödinger op...
متن کاملRandom Schrödinger Operators on Manifolds
We consider a random family of Schrödinger operators on a cover X of a compact Riemannian manifold M = X/Γ. We present several results on their spectral theory, in particular almost sure constancy of the spectral components and existence and non-randomness of an integrated density of states. We also sketch a groupoid based general framework which allows to treat basic features of random operato...
متن کاملTotally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures
In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002